Optimización Clásica
Ilustración de Problemas no lineales
La figura 13.5 muestra lo que ocurre con este problema si los únicos cambios que se hacen al modelo de la sección 3.1 son que la segunda y tercera restricciones funcionales se sustituyen por la restricción no lineal 9x{ + 5x2 < 216. Compare las figuras 13.5 y 3.3. La solución óptima sigue siendo (a^ , x2) = (2,6). Todavía se encuentra sobre la frontera de la región factible, pero no es una solución factible en un vértice (FEV). La solución óptima pudo haber sido una solución FEV con una función objetivo diferente (verifique Z = 3xx + x2), pero que no necesite serlo significa que ya no se puede aprovechar la gran simplificación utilizada en programación lineal que permite limitar la búsqueda de una solución óptima para las soluciones FEV
Ahora suponga que las restricciones lineales de la sección 3.1 se conservan sin cambio, pero que la función objetivo se hace no lineal. Por ejemplo, si
Si un problema de programación no lineal no tiene restricciones, el hecho de que la función objetivo sea cóncava garantiza que un máximo local es un máximoglobal. (De igual manera, una función objetivo convexa asegura que un mínimo local es un mínimo global.) Si existen restricciones, entonces se necesita una condición más para dar esta garantía, a saber, que la región factible sea un conjunto convexo. Como se analiza en el apéndice 2, un conjunto convexo es sencillamente un conjunto de puntos tales que, para cada par de puntos de la colección, el segmento de recta que los une está totalmente contenido en la colección. Así, la región factible en el problema original de la Wyndor Glass Co. (vea la figura 13.6 o 13.7) es un conjunto convexo. De hecho, la región factible para cualquier otro problema de programación lineal es un conjunto convexo. De igual manera, la región factible de la figura 13.5 también es un conjunto convexo.
En general la región factible para un problema de programación no lineal es un conjunto convexo siempre que todas las funciones g¡ (x) [para las restricciones g¿ (x) < b{ ] sean convexas. Para el ejemplo de la figura 13.5, las dos gt (x) son convexas, ya que gx (x) = xx (una función lineal es automáticamente cóncava y convexa) y g2 (x) = 9x\ + 5x\ (tanto 9x\ como 5x2 son funciones convexas, por lo que su suma es una función convexa). Estas dos funciones convexas g¡ (x) conducen a que la región factible de la figura 13.5 sea un conjunto convexo.
Ahora se analizará qué pasa cuando sólo una de estas funciones g¡ (x) es una función cóncava. En particular, suponga que el único cambio que se hace al ejemplo de la figura 13.5 es
son funciones cóncavas. La nueva región factible mostrada en la figura 13.10 no es un conjunto convexo. <Por qué? Porque contiene pares de puntos, como (0, 7) y (4, 3), tales que parte del segmento de recta que los une no está en la región factible. En consecuencia, no se puede garantizar que un máximo local sea un máximo global. De hecho, este ejemplo tiene dos máximos locales (0, 7) y (4, 3), pero sólo (0, 7) es un máximo global.
Entonces, para garantizar que un máximo local sea un máximo global para un problema de programación no lineal con restricciones (x) < b¡ (i = 1,2,…, m) y x > 0, la función objetivo /(x) debe ser cóncava y cada gí (x) debe ser convexa. Un problema de este tipo se llama problema de programación convexa y es una de las clases más importantes de la programación no lineal que se estudiará en la siguiente sección.